

Test Monitoring Tool

Realisation

Syan Delbart

Bachelor Applied Computer Science
Specialization Digital Innovation

Academic Year 2023-2024

Campus Geel, Kleinhoefstraat 4, BE-2440 Geel

3

TABLE OF CONTENTS
Table of contents .. 3

1 Introduction .. 5

1.1 The company .. 5

1.2 Issue .. 6

1.3 Mission .. 6

1.4 Planning .. 6

2 Used technologies .. 7

2.1 NodeJS .. 7

2.2 NextJS ... 7

2.3 NextAuth (Auth.JS) ... 7

2.4 Ollama ... 7

2.5 TensorFlow .. 8

2.6 Redis .. 8

2.7 BullMQ ... 8

2.8 PostgreSQL .. 8

2.9 Puppeteer .. 8

2.10 Prisma .. 9

2.11 Docker .. 9

2.12 SonarCloud ... 9

3 Features .. 10

3.1 Manage Sources .. 10

3.2 Manage API Keys ... 11

3.3 Manage Prompts ... 13

3.4 Manage Issues ... 14
3.4.1 Integration with external tooling .. 14

3.5 Manage Logs ... 16
3.5.1 Reactivity ... 17
3.5.2 Context AI Models .. 17
3.5.3 Filtering ... 19
3.5.4 Column filtering ... 19
3.5.5 Bulk action buttons .. 20
3.5.6 Preprocessing ... 21
3.5.7 Run through AI (Classification) ... 21
3.5.8 Visual AI model ... 23

4 Application structure .. 24

4.1 Retrieving the logs .. 24
4.1.1 Running the context AI ... 24

4

4.2 Queue system .. 25
4.2.1.1 Retrieving the logs ... 25
4.2.1.2 Running the context AI ... 25

4.3 Deployment ... 26
4.3.1 Quality insurance .. 26

4.3.1.1 Building the application .. 26
4.3.1.2 Analyzing the code ... 26

4.3.2 Deploying the application .. 27

5 Analyzing Phase .. 28

5.1 Questions logs ... 28

5.2 Questions AI ... 29

6 Conclusion ... 30

7 Glossary .. 31

5

1 INTRODUCTION

1.1 The company

Resillion plays an essential role in supporting companies in developing,
validating, and optimizing digital products and services, especially in the context
of the Internet of Things (IoT). The company offers comprehensive testing and
validation services to ensure the reliability, security, and efficiency of digital
systems, devices, and content. Their expert team works closely with clients to
provide customized solutions that meet the highest industry standards.

Resillion designs and conducts tests to evaluate the performance and security of
digital products and offers quality assurance services to identify and resolve
potential issues during development and implementation. This helps companies
comply with national and international regulations and standards and remain
competitive in a changing market.

Additionally, Resillion offers training and consultancy services to improve
companies' internal processes and skills, leading to higher product quality and
better competitiveness. With a specialized division, Resillion Cyber Security, the
company also helps protect digital systems and content against cyberattacks.

In summary, Resillion supports companies throughout the entire software
development lifecycle with high-quality testing and quality assurance services,
resulting in cost savings, faster time-to-market, and success in the information
technology sector and beyond.

During my internship, I worked with colleagues at SQS. Within this department,
QA testing is performed, including both manual tests and automation testing.
Various types of applications are tested here, including web applications, mobile
applications, and more.

6

1.2 Issue

The manual analysis of test logs is a time-consuming process that involves
various employees who need to individually review these logs and link them to
specific issues. Given that many of these problems are recurring, automating
this process offers significant added value. Automation can not only reduce a
considerable amount of repetitive manual work but also enable the team to use
their available time and resources more efficiently.

1.3 Mission

During my internship at Resillion, I was responsible for the "Test Monitoring
Tool" project. The primary goal of this project was to develop an advanced tool
capable of performing in-depth analyses on complex test logs. A crucial aspect
of this project was the tool's ability to make predictions about the most likely
errors based on identified patterns and trends. Additionally, it was essential that
these predictions be presented to the end-user in a visually compelling manner
to enable more efficient processing of the test logs.

Although the tool is officially named a "Test Monitoring Tool," it is designed to
work with any type of log file. This means it can handle various log files, not just
those related to tests. Therefore, the term "log monitoring" is used more
frequently throughout this report, as it more accurately reflects the tool's
broader functionality.

1.4 Planning

The initial overview plan was the baseline planning utilized at the beginning of
the project. However, over time, deviations from this plan occurred. I
subsequently adopted Kanban methodologies, which did not fully align with the
initial plan due to its rigid structure based on a waterfall model. For
documentation purposes, the original planning is included, but for the eventual
realization of this project, mainly a Kanban board was used. There was a total of
approximately 100 created tickets.

Figure 1 - A representation of the initial planning

Bi-weekly (internal) demos provided an excellent opportunity to gather
substantial feedback and observe the progression of the project. The use of
Kanban allowed for more flexibility, which was very beneficial as not every task
was already defined. It made more room for overcoming certain obstacles and
improved the amount of work that could be delivered at each demo.

7

2 USED TECHNOLOGIES

2.1 NodeJS

Node.js is an open-source, cross-platform JavaScript runtime environment that
executes JavaScript code outside of a web browser. It is designed to build
scalable network applications and is particularly well-suited for I/O-heavy
operations, such as web servers and real-time applications. Node.js uses an
event-driven, non-blocking I/O model, which makes it efficient and lightweight.
It also has a vast ecosystem of libraries and modules available via the npm
(Node Package Manager).

2.2 NextJS

Next.js is a React framework that enables functionality such as server-side
rendering and generating static websites for React-based web applications. It
simplifies the process of building complex web applications by providing a robust
framework with features like automatic code splitting, easy static export, and a
rich plugin ecosystem. Next.js is particularly popular for building SEO-friendly
websites and applications due to its ability to render pages on the server side.

2.3 NextAuth (Auth.JS)

NextAuth is an authentication provider specifically designed for NextJS. This
library supports basic credential authentication (email, password) as well as
third-party providers. Since during the internship itself there will not be any
access to the required tokens to make third-party providers work, it is
convenient to be able to use credentials as login method. The added benefit is
that when the tool gets deployed to production, alternative third-party providers
can easily be added without having to modify the existing data structure or
views.

2.4 Ollama

Ollama is an open-source application designed to enable the running, creation,
and sharing of large language models (LLMs) locally on personal hardware such
as MacOS and Linux systems. Initially supporting models like Llama2, its library
has expanded to include others like Mistral and Phi-2. Ollama provides a
straightforward command-line interface (CLI) for users to interact with these
models, facilitating easy setup and use without extensive technical knowledge.

Ollama allows users to run LLMs locally, ensuring greater control over data
privacy and potentially reducing costs compared to cloud services. It supports
its own API and an OpenAI-compatible API, allowing developers to seamlessly
integrate LLMs into their applications using various programming languages,
including Python and JavaScript. Additionally, Ollama can run within Docker
containers, facilitating integration into larger deployment pipelines, and
providing an isolated environment for model execution.

By providing a flexible and powerful platform for managing large language
models locally, Ollama democratizes access to advanced AI capabilities, making
it easier for individuals and small organizations to leverage state-of-the-art AI
technology without extensive infrastructure or cloud dependencies.

8

2.5 TensorFlow

TensorFlow is an open-source machine learning library developed by Google. It
is widely used for building and training machine learning models, including deep
neural networks. TensorFlow provides a flexible ecosystem of tools, libraries,
and community resources that enable researchers and developers to push the
state-of-the-art in machine learning and easily build and deploy machine
learning-powered applications. It supports various platforms and languages,
with Python being the most used.

2.6 Redis

Redis (Remote Dictionary Server) is an open-source, in-memory data structure
store used as a database, cache, and message broker. It supports various data
structures such as strings, hashes, lists, sets, sorted sets, and more. Redis is
known for its high performance, flexibility, and extensive feature set, making it
suitable for use cases requiring low-latency data access, such as caching, real-
time analytics, session management, and message queuing.

2.7 BullMQ

BullMQ is a Node.js library for creating robust and scalable job queues using
Redis. It is an evolution of the popular Bull library, designed to handle
background jobs, process them asynchronously, and manage job queues with
advanced features like job prioritization, concurrency control, retries, and job
scheduling. BullMQ is particularly useful for applications that require background
processing, task scheduling, and handling of high-throughput data workflows.

2.8 PostgreSQL

BullMQ is a Node.js library for creating robust and scalable job queues using
Redis. It is an evolution of the popular Bull library, designed to handle
background jobs, process them asynchronously, and manage job queues with
advanced features like job prioritization, concurrency control, retries, and job
scheduling. BullMQ is particularly useful for applications that require background
processing, task scheduling, and handling of high-throughput data workflows.

2.9 Puppeteer

Puppeteer is a Node.js library that provides a high-level API to control headless
Chrome or Chromium browsers. It is used for web scraping, automated testing,
and web performance analysis. Puppeteer allows developers to
programmatically interact with web pages, simulate user interactions, and
capture screenshots or PDFs of web pages. It is particularly useful for
automating browser tasks and running tests in a real browser environment
without the need for a graphical user interface.

9

2.10 Prisma

Prisma is an open-source ORM (Object-Relational Mapping) tool that simplifies
database management by allowing developers to define and interact with their
database schema in a type-safe manner. It supports various databases and
enables efficient data querying, migrations, and seamless integration with
modern development frameworks.

2.11 Docker

Docker is an open-source platform that automates the deployment, scaling, and
management of applications using containerization. Containers are lightweight,
portable units that package an application along with its dependencies, libraries,
and configuration files. This ensures that the application runs consistently across
different environments. Docker simplifies the development lifecycle by allowing
developers to build, share, and run applications in isolated environments,
reducing conflicts and enhancing scalability. Docker also integrates with various
orchestration tools like Kubernetes, making it easier to manage containers in
large-scale, distributed systems.

2.12 SonarCloud

SonarCloud is a cloud-based code quality and security service that performs
static code analysis to detect bugs, code smells, and security vulnerabilities in
your projects. It supports multiple programming languages and integrates
seamlessly with popular CI/CD pipelines. SonarCloud helps ensure that code is
clean, maintainable, and secure by providing detailed reports and actionable
insights. It also includes features such as code coverage analysis, duplications
detection, and technical debt measurement, making it an essential tool for
continuous code quality and improvement. SonarCloud's dashboards and
visualizations help teams track code quality over time and prioritize areas that
need attention. 	

10

3 FEATURES
The application is designed to be highly manageable. We aim to minimize direct
intervention with the application itself, so the system is built to allow
adjustments to be made from within the application itself.

3.1 Manage Sources

This feature allows users to manually add and organize various data sources.
Although the input feeding method cannot be customized, if data is fetched from
a specific source, the source program can be automatically created. Currently,
this is mainly used as a label and a way to separate and sort the log files.

Figure 2 - A representation of the existing sources

The source names are blurred out in this instance. A custom color can be
provided to the sources for easier identification.

11

3.2 Manage API Keys

Communication with the application from the outside is done using API keys. In
practice, these are JSON Web Tokens that contain the relevant information
about the API key, such as the creator, the source for which the API key was
created (optional) and an expiry date.

Figure 3 - A representation of the user’s API keys.

The API keys can be used for client interaction with the application using the
supported API endpoints. Specific endpoints have been created for external
connections.

Route Explanation

/api/external/heartbeat Used to test if the API key is (still) valid.

/api/external/logs Used for managing logs externally. Mainly
used to fetch the AI context and
classification.

/api/external/logs/linkIssue If an issue is provided, the log classification
will be corrected to this provided value.

/api/external/logs/linkIssue/correctPrediction Sends a signal that the predicted value is
correct, which sets the corrected value to
the prediction value.

12

Another use case for these API keys is to add logs to the application from a
certain data source. This integrates nicely with technologies that output logs
which can call certain API endpoints. A perfect example is a pipeline, which can
call the API endpoint and provide it with the relevant information to create a
new log.

13

3.3 Manage Prompts

Since different programs might have different interpretations of log messages,
there is a necessity for being able to customize the prompts. Existing prompts
can be modified to improve the context output of the used AI models. Currently,
in the application itself, prompts are applied per log, and not per source. This
was a conscious decision to be able to manage the context providing on a log
level instead of source level. In the long term, and to further reduce the log
monitoring overhead, it might be beneficial to apply prompts per source instead.

In the last week of my internship, specifically for the Gemini AI implementation,
a certain prefix was added to the prompt managing. This means that while most
context AI models will use the assigned prompt on log level, Gemini uses a
general prompt which is inferred from the last added prompt with that certain
prefix.

Figure 4 - A representation of the existing prompts

14

3.4 Manage Issues

Before the log monitoring tool, issues were managed manually. This means,
when an issue was identified, this needed to be manually searched for in a
certain table and modified accordingly. If it didn’t exist, it needed to be added
manually. This search process has a certain overhead and takes quite some
time. It requires the person monitoring to already know the name of the issue.

3.4.1 Integration with external tooling

The current process required quite some manual work. The issue needs to be
identified manually and needs to be documented manually. For this internship, it
was important to be able to integrate the test monitoring tool with the current
tooling. Eventually, the idea is that this tool can be used for any external
tooling. This is where the use of the API keys is necessary for client-to-
application interaction from the external tooling.

To integrate with this external tooling, a modal was added. This modal makes it
possible to see the current identified issue, given there is one. Upon selecting
another issue from the dropdown list, the corrected issue is modified through
the API endpoint. Alternatively, a new issue can be created, which will take the
user to the log monitoring tool itself. Ideally, the prediction the AI made is
correct, and the user simply clicks the “Prediction correct” button.

Figure 5 - A modal displaying the external interaction with the issues.

After the issue has been corrected, it will already be added to the issue table.
Relevant information such as the test number, whether it was a functional test
or KPI test and when the issue has been found latest, are all shown in the log
monitoring tool already, without anyone needing to add that information
manually. This already automates a large part of the issue documentation.

15

This process of identifying and correcting the issues adds the relevant
information automatically in the log monitoring tool. This provides a structured
way to keep track of all the issues, and already decreases a lot of manual work.

Figure 6 - A modal displaying the URLs where a certain issue has been found.

16

Even the URLs where the issue has occurred are being added automatically.
When the manual approach was in use, these URLs needed to be added
manually, and usually only some of them were included. With the automated
method, all the occurrences are being logged.

3.5 Manage Logs

The most important part of the tool is being able to manage the logs. This
“central” point of the tool is where everything comes together. A log is linked to
the following:

- Prompt
- Source
- Issue (identified, corrected)

This means being able to manage each of the previously mentioned features are
all important to correctly manage the logs.

Figure 7 - A representation of the existing logs.

The above figure is a representation of the logs table. This table is more
advanced than the others. The reason for this is because the AI gets executed
at the log level. Another fact is that there are simply a lot of logs being added

17

daily, which makes being able to a sort and filter the information more
important and necessary.

3.5.1 Reactivity

The log table refreshes at a given interval. This means it fetches newly added
logs. To make the user-experience optimal, these logs are not automatically
added to the table. Rather, the table must be refreshed manually before the
new logs will be appended to the table.

Figure 8 - The refresh button, disabled, as there are no new logs.

Figure 9 - The refresh button, enabled, as there are new logs found.

Not only are newly created logs being added in this way. Fetching the state of
the AI progress is also done reactively. This means the progress can be
observed in real-time.

All this is done through simple, periodic, fetch calls. An alternative was to use
Web Sockets. Whilst this method is more lightweight, the implementation in this
specific framework was quite tedious. Therefore, the choice was made for a
more stable method which has somewhat more overhead. If this application
would be used by a large amount of people at the same time, using WebSocket
would be the preferred way.

3.5.2 Context AI Models

The so called “context” AI models are essentially text2text models. These take
in the log information and output a context which might contain a clearer idea of
what the issue is, and/or might contain a possible solution. Currently, multiple
models are being used. This is mainly so because there are a lot of
advancements regarding AI, and new models are being trained almost daily.
Being able to identify the most performant model depends on a lot of factors.
This feature makes it possible to use multiple models, without having to test
them one by one.

18

Figure 10 - A popover menu showing the progress of each individual context AI model.

Clicking on the Progress column within a log entry will open a popover. The
individual progress per model can be observed there. The combination of all
these states will be used to show the current state of the log context providing.

There are 5 different states:

State Explanation

Failed The analyzing failed, and an error message will
be shown on hover. This is caused by the
following issues: response provider crashed,
the model is not installed

Skipped This happens when the model is in the “skip”
list. This list is especially useful on
development, since not all models can be run
on the development machine.

In queue This log will be analyzed once it has reached
first place in the queue.

In progress The log is currently being analyzed.

Complete The log has been analyzed successfully.

19

These states are determined per AI model per log, as each model is executed
separately.

3.5.3 Filtering

The filtering for these logs is done through a dedicated button.

Figure 11 - A popover menu displaying the filter possibilities.

This button opens a popover menu which allows the user to specify the dates
and log type of choice. It might be relevant to only show all the failing logs in
the previous 30 days. The filtering is done on server-side. First this feature
executed on the client-side, but this was not scalable as the number of logs is
increasing daily.

3.5.4 Column filtering

This feature allows the user to select only certain information regarding the log.

20

Figure 12 - A dropdown list consisting of all columns in the log table, can be
enabled/disabled per column.

The state of these columns is stored in the local storage of the user. This means
that the state remains on reload, as it is stored in the browser data storage.
This is different from the filtering feature, which modifies the URL and does not
store its state on the client-side.

3.5.5 Bulk action buttons

These buttons allow the user to do bulk operations on selected logs. These were
especially useful while developing the tool, since changing the underlying code
might require re-analyzing some logs or reprocessing them. The difference
between analyzing and re-analyzing is that re-analyzing will only analyze jobs
that have failed/skipped.

21

Figure 13 - Bulk action buttons, these are buttons that can be used for controlling
multiple logs at the same time.

3.5.6 Preprocessing

Preprocessing of the log message is important. This is different from AI
preprocessing but is necessary to remove unnecessary characters from the
message before inputting it to the models.

Figure 14 - A display of the initial message (left) and the preprocessed message (right),
which displays the transformation of the message.

As seen in the figure above, this is where the preprocessing happens. The client
can see the preprocessed message real-time and can modify the message if
necessary. The preprocessing function executes on the client-side as well as
server-side. As seen in this example, the input is a certain XML input. The
output is condensed to only contain the error messages. For the current
implementation, only XML input was relevant. This can however be expanded as
need be. Input such as CSV, HTML, … can also be supported if this is required in
the future.

3.5.7 Run through AI (Classification)

22

The AI classification is done with the use of TensorFlow. Training the model is
currently done in the following flow:

1. Create dictionary from all words in all logs
= convert words to a number, an “index”)

2. Tokenize all logs
= convert all log words to the corresponding index in the dictionary

3. Take the first and last 500 tokens of each log, creating a vector of 1000
tokens.

4. Combine this vector with the “corrected issue”
the corrected issue = the manually selected issue

5. Fit the dataset on the model.

This results in a trained model. This model can then be used to predict new
issues. Over time, the identified issues will be compared to the corrected issues.
The number of times the identified issue is the same as the corrected issue will
be the success factor. The idea is to maximize this success factor over time and
improve the model.

The model automatically improving based on correcting the wrongly identified
issues is not a feature that is currently implemented but can be implemented
once there is enough training data. In the current implementation, there was
simply not enough training data to benchmark and finetune the model optimally.

Figure 15 - A dropdown list for linking a log to an issue, the identified issue is already
selected, and the corrected can be selected alternatively.

In the dashboard itself, this is represented in the “Identified Issue” column,
where the identified issue is selected by default. This is the issue that is
identified by the trained AI model. Clicking another issue will make the
corrected issue different from the identified issue, and this information will then
be used in the training of the model.

23

3.5.8 Visual AI model

The currently used context AI models could take the log message, but nothing
more. As often, the logs are a textual representation of a certain video file, it
was beneficial if the AI model could take in this information as well. Using open-
source software, this would have been a challenge, too large to fit in the scope
of the internship. However, using Google’s Gemini AI model, it was possible to
pass the video file as well as the log file. Gemini AI can not only tokenize text,
but videos as well. Therefore, the Gemini AI was added to the application. This
required some modifications, but most of the foundations were already existing.
The support for multiple AI models is already implemented, and fetching assets
from the internal service was also supported already.

Essentially, this means that the only step being added is that the video file
should be fetched along with the log message.

The Gemini AI has an existing library for NodeJS, which made it easier to
interact with the AI itself. The steps were as follows:

- Download the video file (save in temporary folder)
- Upload the video file.
- Await ACTIVE state on video file instead of PROCESSING.
- Save the video file reference for later use in API calls.
- Send the log message along with the video file to the Gemini AI model.

As previously mentioned, Gemini uses its own “global” system prompt, this is
because the video files should all be processed in the same way. Asking the AI
to first explain step-by-step what happens in the video proved to be more useful
than directly requiring it to make the connection between the video file and the
log file. Instructions like these can all be provided in the system prompt.

24

4 APPLICATION STRUCTURE

4.1 Retrieving the logs

There is no streamlined method to retrieve the logs. The source from which the
logs must be retrieved is in this case an internal service. There are API
endpoints that can be used to retrieve the latest logs; however, these do not
contain all the relevant information. This endpoint responds with information
such as the log name, log type, and so on, but is missing one crucial aspect.
The log message itself. This log message is an artifact which is provided on
another service, which can only be accessed when the user is logged in. Using
the existing API access this asset cannot be retrieved. This means the only
viable way to retrieve the log message is to log-in and navigate to the asset’s
URL path. This requires the use of a library called “Puppeteer”. This library
simulates a real browser, in which there is in fact a real client.

For each log, the same process was repeated:

1. Start a browser instance.
2. Navigate to the login page.
3. Login to the internal service with user credentials
4. Navigate to the log message’s URL path.
5. Download the visible text on the webpage.

Once all the visible log message text is downloaded, it can then be added to the
log itself. Sadly, this process is not very optimal, as starting a browser is a
relatively long process.

In the application itself, a BrowserPool was created which is essentially a global
defined browser pool with a set number of browsers that are already logged in
and ready to be used. Due to instability (browsers closing, login sessions
invalidating, …) this method was not very optimal, even though it was way
faster.

The current state of the project starts a new browser for each individual log, but
optimally this would be a browser that gets reused. Even more optimal would be
an API endpoint from which the log message can directly be retrieved.

4.1.1 Running the context AI

Running the AI models require quite some time and computational power. For
this, a separate service is being used. This service is called “Ollama”. This allows
LLMs to be ran locally on either CPU or GPU power. After downloading the
relevant models, these can be accessed from an API endpoint. The previously
retrieved log message can then be provided together with some other relevant

25

metadata. The API responds with a context response. This can only start once
the log message has been retrieved.

4.2 Queue system

Retrieving the logs as well as running the AI model are tasks that take quite
some time. It cannot be calculated before being executed; therefore, a queue is
necessary. Another reason why this is important is because running the AI
context models can only happen sequentially, not in parallel. It is important to
make sure only one model runs at the same time. These things can be specified
in a queue.

First, the queue service “Quirrel” was being used. This service was specifically
created for NextJS but was optimized to run in an edge environment. Even
though it was possible to run locally, there were some performance issues which
made working with this service not ideal, as well as the service not receiving
future support. Eventually, BullMQ was used. Compared to Quirrel, BullMQ could
be integrated directly in the application itself, whilst Quirrel needed its own
server. This added stability made BullMQ even more suitable.

4.2.1.1 Retrieving the logs

The amount of queue jobs running concurrently depends on the number of
available browsers. Since a new browser is created for each log independently,
this should be limited to a reasonable number. This number can be modified
depending on the available computational power.

4.2.1.2 Running the context AI

For this internship, it is assumed that only one GPU is available. The amount of
GPU power available will essentially determine the number of jobs that can be
ran concurrently. In this case, this is limited to one.

For each of these tasks, separate, isolated, queues are being used.

 	

26

4.3 Deployment

4.3.1 Quality insurance

For quality assurance, Azure Pipelines were utilized. Azure Pipelines are
automated scripts that run on the uploaded code. These pipelines can be
configured with specific conditions, such as requiring successful script execution
before allowing the code to be integrated into the production codebase. During
this internship, Azure Pipelines were consistently used to ensure that the latest
code met certain standards.

4.3.1.1 Building the application

One of the tasks of the Azure Pipeline was to build the web application. This
involved specifically building the Dockerfile related to the Next.js web
application. If this build failed, it indicated an error in the code, such as a typing
error or another issue that would prevent the application from being built in
production.

4.3.1.2 Analyzing the code

For code analysis, a third-party provider called SonarCloud was used.
SonarCloud ensured that the code met a certain quality standard. If the code
did not pass this analysis, the pipeline would fail, and the code needed to be
improved before it could be merged into the production codebase.

27

4.3.2 Deploying the application

To deploy the application, Docker was used. There were several different
services:

- NextJS application (frontend + API)
- PostgreSQL (database)
- Redis (database for queues)
- Browserless (spawns browsers containerized)
- Ollama (Running AI models locally)

Figure 16 - A simple representation of the application architecture

These containers connected with NextJS directly. Running this required the
installation of GPU passthrough so that the AI service could use the GPU power.

To use all these services together, an appropriate Docker Compose file was
utilized. All services, except for Next.js, were based on existing Docker images.
The Next.js application had a dedicated Dockerfile that needed to be built before
use.

An internal Nginx proxy manager was available, ensuring that the application
was reachable through a dedicated URL instead of just an IP address. This
provided multiple benefits, including the provision of a valid SSL certificate,
which enabled encrypted traffic. 	

28

5 ANALYZING PHASE
In the first weeks of the internship, it was crucial to ask questions, primarily
related to AI and data. Understanding that AI requires specific instructions and
clear data input was essential. Therefore, it was important to inquire about the
inputs being used to accurately define the expected outputs.

While there were several specific questions, they are not detailed in this
document as they pertained more to the project's implementation rather than
the initial analysis. The answers have been summarized because they
encompass a variety of information, including screenshots, which do not
necessarily clarify the outcomes of these questions.

5.1 Questions logs

1. Which logs need to be monitored?
The logs requiring monitoring for this internship are limited to an internal
service that hosts several different programs. The goal is to make the
tool as broad as possible, allowing it to connect with other services in the
future.

2. How much data is available, and is it enough?
The internal service stores all logs indefinitely, ensuring enough data is
available for analysis.

3. Where are the patterns and trends located in these logs? How can
an issue be identified?
The log structure remains consistent, with specific failure messages
differing between programs. For instance, a web application might report
issues related to page loading, while a video stream could have frame
rate drop issues.

4. Are the outcomes of these logs already available?
Yes, the outcomes of each log are accessible via an API endpoint, using
indicators like Passed/Failed. False positives and false negatives are also
tracked, but these must be manually adjusted.

5. Is there a formally determined connection between the log and
the issue?
Often, the log describes the issue, but sometimes this is vague,
especially for issues like video flickering that are only visible in a video
stream. To clarify this connection, the video stream should be tokenized
and analyzed alongside the log.

6. Is there a formally determined connection between the issue and
the solution?
Not always. It is not guaranteed that each issue has a solution that AI
can infer. While documented solutions can help, making this
comprehensive is challenging. Different services might have vastly
different issues and solutions. For the scope of this internship, it is
assumed there is no formally determined connection yet.

7. Do the logs need to be isolated from each other for actual issue
identification?
Isolation does not appear necessary for the implementation. The sources
include video streams, web applications, and mobile applications, which
often have related issues. The log output is quite generic across different

29

programs. However, as the tool expands to other services with different
log structures, isolation might become necessary.

8. Can the logs from different sources be combined in one model? Is
a separate model required for each log?
For this internship, it is assumed that logs from different sources can be
combined in one model. Given the similarity in log outputs, a single
model is used for all sources. In future expansions, using multiple models
might be beneficial, offering improved accuracy at the cost of reduced
training data. This should be benchmarked and cannot be decided
beforehand.

5.2 Questions AI

1. Are the (currently existing) tools to monitor logs and analyze
them?
While there are existing tools available, they are mostly proprietary and
often tied to specific platforms, offering limited control over the models.
Although these tools exist, they are not ideal for this use case.

2. Are these tools “good enough”? Is it necessary to make a custom
solution?
As mentioned in the first question, the existing tools are not sufficient for
this use case. They tend to be costly and lack the flexibility to be
modified. While using third-party AI models is an option, no tool
currently integrates well with existing services. Additionally, since it is
preferable to have the entire application on-premises, existing tools do
not meet these requirements.

3. How can there be a guarantee that the used AI does not
share/store information?
This can be ensured by training and using models locally. However, this
approach requires consideration of factors such as hardware power
(GPUs) and scalability. Some third-party model providers offer options to
disable data usage in training and prevent storage, but these measures
do not provide absolute guarantees.

30

6 CONCLUSION
The primary goal of this project was to develop a fully functional application.
Initially, the freedom in architectural and design choices was daunting, but it led
to a deeper understanding of key technical concepts. I gained extensive hands-
on experience with various technologies, particularly in distinguishing between
cloud-based and on-premises applications. Key considerations included
deployment machine performance, application scalability, and system isolation.

The project, although a Proof of Concept, felt more like a real product.
Prioritizing functionality over optimization was necessary due to time
constraints, especially during bi-weekly demos. This approach highlighted the
need for better scalability testing and a more integrated workflow.

Necessary optimizations include:

• Scalability: This aspect wasn't fully tested, especially in scenarios
involving multiple GPUs or AI services.

• Workflow: The code flow could be more seamless, as some elements felt
appended rather than naturally integrated, partly due to dynamic project
scope adjustments.

Working in an agile environment allowed for many adjustments but also
presented challenges, emphasizing the importance of better scope estimation
for future projects.

Overall, the project successfully met its objectives and provided significant
insights into developing robust, scalable applications with a clear focus on
practical implementation over theoretical optimization.

31

7 GLOSSARY

Term Definition

Kanban A project management methodology that focuses on
visualizing work, limiting work in progress, and optimizing
flow. It uses a board with columns and cards to represent
tasks and their status, allowing teams to manage work
more flexibly and continuously improve their processes.

Proof of Concept
(PoC)

A demonstration or prototype used to verify that certain
concepts or theories can be successfully applied in
practice. It helps validate the feasibility and potential of an
idea before committing to full-scale development.

AI Models Computational algorithms designed to recognize patterns
and make decisions based on data. These models can
perform tasks like classification, regression, and
clustering, and are used in applications such as natural
language processing and image recognition.

API (Application
Programming
Interface)

A set of rules and definitions that allows different software
applications to communicate with each other. APIs
specify how software components should interact and
enable the integration of different systems and services.

CLI (Command-Line
Interface)

A text-based user interface used to interact with software
and operating systems by typing commands. CLIs provide
a way to perform tasks, run programs, and manage system
resources using text input.

WebSockets A communication protocol that provides full-duplex
communication channels over a single TCP connection.
WebSockets enable real-time, bidirectional
communication between a client (like a web browser) and
a server, making it ideal for applications like live chat and
online gaming.

Tokenization The process of converting words or text into numerical
tokens that a machine learning model can process.
Tokenization is a fundamental step in natural language
processing, where text data is transformed into a format
suitable for analysis by algorithms.

Local Storage A web storage method that allows websites to store data
on a user's browser. Local storage retains data across
browser sessions, enabling web applications to save and
retrieve information even after the browser is closed and
reopened.

32

GPU Passthrough A technique that allows a virtual machine to directly use a
physical GPU. This enhances computational performance
for tasks like training AI models and running high-
performance applications that require significant
graphical processing power.

Bi-weekly Demos Regular demonstration sessions held every two weeks to
showcase progress on a project. These demos provide
opportunities to gather feedback, make adjustments, and
ensure the project is on track.

Automated Testing The use of software tools to execute pre-scripted tests on
an application before it is released into production.
Automated testing helps identify defects, ensure
functionality, and improve the quality of software by
running tests quickly and repeatedly.

Quality Assurance
(QA)

A systematic process to ensure that products and services
meet specified requirements and are reliable,
maintainable, and fit for purpose. QA involves activities
like testing, inspection, and review to detect and prevent
defects in software development.

Docker Compose Docker Compose is a tool that allows you to define
and manage multi-container Docker applications.
Using a YAML file, you can configure the services,
networks, and volumes required for your application,
enabling you to deploy and manage all your
containers with a single command. It simplifies the
orchestration and scaling of complex applications
composed of multiple services.

Dockerfile A Dockerfile is a text file that contains a set of
instructions for building a Docker image. It specifies
the base image to use, the necessary dependencies,
configuration settings, and the commands to build and
run the application. The Dockerfile enables the
creation of a custom Docker image that can be
consistently reproduced and shared across different
environments.

Nginx proxy manager Nginx Proxy Manager is a tool that simplifies the setup
of Nginx as a reverse proxy server. It provides a user-
friendly web interface to manage proxy hosts, SSL
certificates, and redirects. It allows you to route
incoming requests to different backend services,
enabling seamless domain management and load
balancing.

SSL Certificate An SSL (Secure Sockets Layer) certificate is a digital
certificate that authenticates the identity of a website
and enables an encrypted connection. SSL certificates
ensure that data transferred between the web server
and browsers remains private and secure. Websites
with SSL certificates use HTTPS protocol, providing a
secure communication channel and building trust with
users.

